Syncytial communication in descending vasa recta includes myoendothelial coupling.
نویسندگان
چکیده
Using dual cell patch-clamp recording, we examined pericyte, endothelial, and myoendothelial cell-to-cell communication in descending vasa recta. Graded current injections into pericytes or endothelia yielded input resistances of 220 ± 21 and 128 ± 20 MΩ, respectively (P < 0.05). Injection of positive or negative current into an endothelial cell depolarized and hyperpolarized adjacent endothelial cells, respectively. Similarly, current injection into a pericyte depolarized and hyperpolarized adjacent pericytes. During myoendothelial studies, current injection into a pericyte or an endothelial cell yielded small, variable, but significant change of membrane potential in heterologous cells. Membrane potentials of paired pericytes or paired endothelia were highly correlated and identical. Paired measurements of resting potentials in heterologous cells were also correlated, but with slight hyperpolarization of the endothelium relative to the pericyte, -55.2 ± 1.8 vs. -52.9 ± 2.2 mV (P < 0.05). During dual recordings, angiotensin II or bradykinin stimulated temporally identical variations of pericyte and endothelial membrane potential. Similarly, voltage clamp depolarization of pericytes or endothelial cells induced parallel changes of membrane potential in the heterologous cell type. We conclude that the descending vasa recta endothelial syncytium is of lower resistance than the pericyte syncytium and that high-resistance myoendothelial coupling also exists. The myoendothelial communication between pericytes and endothelium maintains near identity of membrane potentials at rest and during agonist stimulation. Finally, endothelia membrane potential lies slightly below pericyte membrane potential, suggesting a tonic role for the former to hyperpolarize the latter and provide a brake on vasoconstriction.
منابع مشابه
Descending vasa recta endothelial cells and pericytes form mural syncytia.
Using patch clamp, we induced depolarization of descending vasa recta (DVR) pericytes or endothelia and tested whether it was conducted to distant cells. Membrane potential was measured with the fluorescent voltage dye di-8-ANEPPS or with a second patch-clamp electrode. Depolarization of an endothelial cell induced responses in other endothelia within a millisecond and was slowed by gap junctio...
متن کاملDirect determination of vasa recta blood flow in the rat renal papilla.
Blood flow in vasa recta capillaries of the exposed renal papilla of young antidiuretic rats (n = 18) was determined by an adaptation of the video-photometric technique of Intaglietta. The erythrocyte velocity and capillary diameter in vasa recta (n = 97) were measured at the same location by means of fluorescence video microscopy, with fluorescein-labeled bovine gamma-globulin as a plasma mark...
متن کاملAn examination of transcapillary water flux in renal inner medulla.
We recently demonstrated that net fluid uptake occurs in the capillary system of the inner medulla. To define the site of fluid uptake, the concentration of protein was determined in plasma from descending vasa recta at the base and tip of the exposed papilla in Munich-Wister rats. The vasa recta plasma-to-arterial plasma protein concentration ratio (VR/P) was 1.43 +/- 0.09 at the base and 1.66...
متن کاملSpecial Communication Ca signaling and membrane potential in descending vasa recta pericytes and endothelia
Rhinehart, Kristie, Zhong Zhang, and Thomas L. Pallone. Ca2 signaling and membrane potential in descending vasa recta pericytes and endothelia. Am J Physiol Renal Physiol 283: F852–F860, 2002. First published April 23, 2002; 10.1152/ajprenal.00065.2002.—We devised a method for removal of pericytes from isolated descending vasa recta (DVR). After enzymatic digestion, aspiration of a descending v...
متن کاملIsolation and perfusion of rat inner medullary vasa recta.
Outer medullary isolated descending vasa recta have proven to be experimentally tractable, and consequently much has been learned about outer medullary vasa recta endothelial transport, pericyte contractile mechanisms, and tubulovascular interactions. In contrast, inner medullary vasa recta have never been isolated from any species, and therefore isolated vasa recta function has never been subj...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 307 1 شماره
صفحات -
تاریخ انتشار 2014